Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 726: 138529, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32305761

RESUMEN

Previous studies have demonstrated that plant diversity not only plays an important role in maintaining ecosystem functions but can also mediate the impact of climate change on ecosystem functions. However, the relative importance of multiple aspects of diversity at different scales remains unclear. In this study, we investigated species, functional, and phylogenetic aspects of diversity at α and ß scales, and measured eight soil functions (aboveground productivity, soil organic carbon, total soil nitrogen, total soil phosphorus, soil available nitrogen, soil available phosphorus, soil carbon-nitrogen ratio, and soil nitrogen-phosphorus ratio) to comprehensively assess the relationship between multiple aspects and scales of plant diversity and soil multifunctionality along an aridity gradient across the grasslands of Inner Mongolia. Diversity at α and ß scales explained soil multifunctionality synergistically. Functional diversity explained most of the soil multifunctionality, while phylogenetic diversity explained the least. Aridity had both direct effects on soil multifunctionality, and indirect effects mediated mainly by functional α and ß diversity. These findings indicate that in addition to α diversity, ß diversity also played an important role in maintaining soil multifunctionality, and was an important mediator for the adverse impact of aridity on soil multifunctionality. Our study highlights the critical role of ß diversity, especially regarding functional traits, in predicting the consequences of the increasingly arid conditions in the Inner Mongolian grasslands.


Asunto(s)
Ecosistema , Suelo , Biodiversidad , Carbono , China , Filogenia
2.
Sci Total Environ ; 644: 806-814, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29990929

RESUMEN

Intensive anthropogenic land-use causes habitat loss and landscape homogenization, which leads to the decrease of biodiversity and ecosystem degradation. Therefore, it is important to study the influence of landscape heterogeneity on biodiversity. In this study, vegetation surveys conducted at 53 sites in the Tabu River basin, located at the agro-pastoral ecotone of Inner Mongolia of China, revealed 146 species. Species diversity was evaluated at three scales: species richness within patches (alpha diversity), between patches (beta diversity) and at the landscape scale (gamma diversity). We analyzed landscape heterogeneity (LHtotal) and its driving factors including environmental variables (LHDFenv-var, such as precipitation and altitude), environmental heterogeneity (LHDFenv-het) and human activities (LHDFhum). We used structural equation modeling (SEM) to evaluate the response of species richness to landscape heterogeneity at three scales and determined the relative contribution of driving factors in explaining species diversity at these scales. The results of the study are summarized as follows: 1) Alpha diversity was the dominant component of gamma diversity in the Tabu River basin in Inner Mongolia. 2) There is no significant correlation (P = 0.512) between alpha diversity and LHtotal; with the increase of LHtotal beta and gamma diversities showed hump-shaped relationships. 3) LHDFenv-het was the primary factor in maintaining alpha diversity, with heterogeneity of mean annual precipitation (MAP), temperature (MAT) and altitude (ALT) acting as three largest contributors. LHDFhum primarily contributed to the maintenance of beta diversity. 4) LHDFhum was the primary contributor to gamma diversity, and human activity exceeded threshold values for positive effects. Based on our findings we suggest liming agricultural use along the river to prevent reductions in species diversity.


Asunto(s)
Biodiversidad , Ecosistema , Plantas/clasificación , Agricultura , China , Monitoreo del Ambiente
3.
Ecol Evol ; 7(5): 1605-1615, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28261469

RESUMEN

The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon-Weaver index), functional dominance (the community-weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community-weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...